9. Bölüm: Model Kurma: Bağımsız Değişken Seçimi

Bu bölümde;

- EKK Modeline Değişken Ekleme veya Modelden Değişken Çıkarma
- EKK Modelinde Gecikmeli Değişkenler
- Ek: İlave Belirleme Kriteri
 - Ramsey Model Kurma Hata Testi (RESET)
 - Ramsey Model Kurma Hata Testi (RESET) (Eviews)
- Akaike Bilgi Kriteri (AIC) ve Schwarz Kriteri (SC) (Eviews)
- Alıştırma

9.1. EKK Modeline Değişken Ekleme veya Modelden Değişken Çıkarma

EViews bir değişkenin dışlanmasının model kurma sapmasına yol açıp açmadığını veya modelin gerekli olup olmadığını belirlemek için EKK modelinin alternatif versiyonlarının denenmesine izin vermektedir. Dört önemli model kurma kriteri¹ her zaman aynı sonucu vermemektedir. Teori bir değişkenin modele eklenmesinde kesin bir geçerli gerekçeye sahip değilse diğer üç kriter dikkate alınmalıdır. Bu kriterleri kontrol etmenin tek yolu regresyonu model dahil iken ve model dışlanmışken iki kez tahmin edip sonuçları t-testi, \overline{R}^2 ve Sapma kriterlerine göre yorumlamaktır. Aşağıda yer alan adımlar tavuk talebi modelinde² biftek fiyatının uygun bir değişken olup olmadığının belirlenmesi sürecini anlatmaktadır.

1. ADIM: Chick6.wf1 isimli dosyayı açın.

<u>2. ADIM</u>: Çalışma dosyası menü çubuğundan "**Objects/New Object/Equation**" seçeneğini seçin ve "**Equation Specification**" kısmına sırasıyla *Y C PC PB YD* yazdıktan sonra **OK**'ye tıklayın.

¹ Bu kriterler *Teori, t-testi,* \overline{R}^2 ve *Sapma*'dır.

 $^{{}^{2}\}hat{Y}_{t} = 31.5 - 0.73PC_{t} + 0.11PB_{t} + 0.23YD_{t}$

<u>3. ADIM</u>: EViews tahmin çıktısını daha sonra karşılaştırma yaparken kullanmak için denklem penceresi menü çubuğunda "**Name**" seçeneğini seçin, "**Name to identify Object**" kısmına **EQ01** yazın ve **OK**'ye tıklayın³.

<u>4. ADIM</u>: EQ01 menü çubuğunda "**Object/Copy object...**" seçeneğini seçin ve **EQ01**'in bir kopyasını oluşturun. İsimsiz (**UNTITLED**) yeni bir **EQ01** tahmin çıktısı görüntülenecektir. Bu yeni denklem penceresinde denklem menü çubuğunda "**Estimate**" seçeneğini seçin ve "**Equation Specification**" kısmında *PB*'yi silin ardından **OK**'ye tıklayın.

<u>5. ADIM</u>: Bu tahmin sonucunu daha sonra karşılaştırma yaparken kullanmak için denklem menü çubuğundan "**Name**"i seçerek ve ardından "**Name to identify Object**" kısmına **EQ02** yazarak isimlendirin.

Equation: EQ01 Workfile: CHICK6::Untitled							
View Proc Object Print Name Freeze Estimate Forecast Stats Resids							
Dependent Variable: Y Method: Least Square Date: 02/14/10 Time Sample: 1951 1994 Included observations	Y es : 18:32 : 44						
Variable	Coefficient	Std. Error	t-Statistic	Prob.			
C PC PB YD	31.49604 -0.729695 0.114148 0.233830	1.312586 0.080020 0.045686 0.016447	23.99541 -9.118941 2.498536 14.21738	0.0000 0.0000 0.0167 0.0000			
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.986828 0.985840 2.003702 160.5929 -90.91632 0.978759	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion F-statistic Prob(F-statistic)		43.37500 16.83854 4.314378 4.476577 998.9207 0.000000			

<u>6. ADIM</u>: Bu tahmin sonuçlarını *t-testi*, \overline{R}^2 ve *Sapma* temelinde karşılaştırın ve yorumlayın.

³ Alternatif olarak tahmin sonucu çıktısı denklem menü çubuğunda yer alan "**Freeze**" seçeneği tıklanarak da saklanabilir. Nesne araç çubuğunda yer alan "**Freeze**" seçeneği geçerli görünümün bir kopyasını yaratır. Dondurmanın temel özelliği "**Freeze**" seçeneği ile oluşturulan tablo ve grafiklerin sunumlar veya raporlar için düzenlenebiliyor olmasıdır. Dondurulmuş görüntüler çalışma dosyası örneklemi veya veri değiştiğinde değişmez. Regresyon çıktı tablosunu dondurmanın amacı nesneyi daha sonra çalıma dosyası penceresinde simgesine tıklayarak görmektir. Bunu yapmak için ise dondurulmuş nesnenin adlandırılması gerekmektedir.

Equation: EQ02 Workfile: CHICK6::Untitled							
View Proc Object Print Name Freeze Estimate Forecast Stats Resids							
Dependent Variable: Method: Least Square Date: 02/14/10 Time Sample: 1951 1994 Included observations	Y es : 18:33 : 44						
Variable	Coefficient	Std. Error	t-Statistic	Prob.			
C PC YD	32.94193 -0.700954 0.272477	1.251191 0.084099 0.005936	26.32845 -8.334841 45.90552	0.0000 0.0000 0.0000			
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.984772 0.984030 2.127957 185.6562 -94.10685 0.946570	Mean deper S.D. depend Akaike info Schwarz cri F-statistic Prob(F-stati	ndent var dent var criterion terion stic)	43.37500 16.83854 4.413948 4.535597 1325.737 0.000000			

9.2. EKK Modelinde Gecikmeli Değişkenler

EViews'ta bir değişkeni gecikmeli hale getirmek oldukça kolaydır⁴. Tavuk talebi modeli değişkenlerin EViews'ta nasıl geciktirildiğini göstermek için kullanılacaktır.

1. ADIM: Chick6.wf1 isimli dosyayı açın.

<u>2. ADIM:</u> Y_t 'nin PC_{t-1} , PB_t ve YD_t üzerine regresyonunu gerçekleştirmek için çalışma dosyası menü çubuğundan "**Objects/New Object/Equation**" seçeneğini seçin, "**Equation Specification**" kısmına sırasıyla *Y C PC(-1) PB YD* yazın ve **OK**'ye tıklayın.

EViews'un örneklemi ayarladığına dikkat edin. Çalışma dosyası penceresinde aralık ve örneklem 1951 1994 olarak gözükürken denklem çıktısında "**Sample(adjusted): 1952 1994**" yer almaktadır. Bir regresyona gecikmeli değişkenler eklediğinizde örneklem ayarlamasının derecesi örneklem öncesi döneme ait veri bulunup bulunmamasına göre değişmektedir. Örneğin, çalışma dosyası aralığı 1950 1994 ve çalışma dosyası örneklemi 1950 1994 olsun. Eğer *PC*'nin bir dönem gecikmelisi ile bir

⁴ Aslında neredeyse EViews fonksiyonları kullanılarak değişkenlerin tüm şekillerde dönüştürülmesine izin verilmektedir. EViews fonksiyonlarının bir listesi için "Help/Reference(Commands and Functions)/Function Reference" kısmına bakınız.

regresyon tanımlarsanız EViews örneklemde ayarlama yapmayacaktır çünkü 1950 için çalışma dosyasında yer alan veriyi kullanabilmektedir.

Equation: UNTITLED Workfile: CHICK6::Untitled						
View Proc Object Print	Name Freeze E	Estimate Foreca	st Stats Resid	s		
Dependent Variable: Method: Least Squar Date: 02/14/10 Time Sample (adjusted): 1 Included observations	Y es e: 18:35 952 1994 e: 43 after adju	stments				
Variable	Coefficient	Std. Error	t-Statistic	Prob.		
C PC(-1) PB YD	32.21825 -0.695212 0.058086 0.252538	1.366773 0.076741 0.044349 0.015780	23.57249 -9.059184 1.309751 16.00357	0.0000 0.0000 0.1979 0.0000		
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.987582 0.986626 1.931466 145.4919 -87.22115 1.299793	Mean dependent var4S.D. dependent var1Akaike info criterion4Schwarz criterion4F-statistic1Prob(F-statistic)0		43.87674 16.70169 4.242844 4.406677 1033.827 0.000000		

9.3. MWD Testi

Ölçme hatası konusu Gujarati *Table 7.6*'da yer alan örnek yardımıyla anlatılacaktır. Tabloda yer alan veri çeyrekliktir. Gül talebine ait veri seti satılan gül miktarını, güllerin ortalama toptan satış fiyatını, karanfillerin ortalama toptan satış fiyatını, haftalık hane halkı harcanabilir gelirini ve trend değişkenini içermektedir. MWD testi aşağıda yer alan modeller vasıtasıyla gerçekleştirilecektir.

$$Y_{t} = \alpha_{1} + \alpha_{2}X_{2t} + \alpha_{3}X_{3t} + u_{t}$$
(1.1)

$$lnY_{t} = \alpha_{1} + \alpha_{2}lnX_{2t} + \alpha_{3}lnX_{3t} + u_{t}$$
(1.2)

Denklemlerde yer alan değişkenler şu şekilde tanımlanmaktadır; Y_t : gül miktarı, X_2 : güllerin ortalama toptan satış fiyatı ve X_3 : karanfillerin ortalama toptan satış fiyatı.

 α_2 ve β_2 'nin işaretlerinin negatif olması, α_3 ve β_3 'ün işaretlerinin ise pozitif olması beklenmektedir. Bilindiği üzere log-doğrusal modelde eğim katsayıları esneklik katsayılarıdır.

(1.1) ve (1.2) denklemlerini tahmin etmek için aşağıdaki adımları uygulayın.

<u>1. ADIM:</u> Eviews'u açın. "File/New/Workfile" seçeneğini seçin. "Workfile structure type" kısmında "Dated-regular frequency" seçeneğini seçin. "Frequency" kısmında "Quarterly" seçeneğini seçin. "Start date" (Başlangıç Tarihi) olarak (1971:3), "End date" (Bitiş Tarihi) olarak da (1975:2) değerlerini girin ve OK 'ye basın.

<u>2. ADIM:</u> "File/Import/Read Text-Lotus-Excel" seçeneğini seçin. *Table 7.6.xls* dosyasını bulun ve açın.

<u>3. ADIM:</u> "Upper left data cell" kismina B2, "Name for series or Number if named in file" kismina 5 yazarak OK'ye tiklayin.

<u>4. ADIM</u>: Tabloda yer alan veriden hareketle gerçek tüketim fonksiyonunu tahmin etmek için çalışma dosyası penceresinde **CTRL**'ye basılı tutarak sırasıyla **Y**, **X2** ve **X3** nesnelerini seçin.

<u>5. ADIM</u>: Nesneler seçili iken üzerine sağ tuşla tıklayın. Açılan seçeneklerden "**Open**"ı ve ardından "**as Equation**" seçeneğini seçin.

6. ADIM: Açılan yeni pencerede OK'ye tıklayın.

<u>7. ADIM:</u> Denklem penceresi menü çubuğunda "**Name**" seçeneğini seçin ve denkleminizi "**Name to identify object**" kısmına **EQ01** yazıp adlandırarak kaydedin.

<u>8. ADIM:</u> (1.2) no'lu denklemi
tahmin etmek için çalışma
dosyası penceresinde CTRL'ye
basılı tutarak sırasıyla Y, X2 ve X3
nesnelerini seçin.

<u>9. ADIM:</u> Nesneler seçili iken üzerine sağ tuşla tıklayın. Açılan seçeneklerden "**Open**"ı ve ardından "**as Equation**" seçeneğini seçin.

Equation Estimation	×
Specification Options	
Equation specification Dependent variable followed by list of regressors including ARMA and PDL terms, OR an explicit equation like Y=c(1)+c(2)*X.	
log(y) log(x2) log(x3) c Denklemi log(değişken) biçiminde düzenleyin	
Estimation settings	
Method: LS - Least Squares (NLS and ARMA)	
Sample: 1971q3 1975q2	
Tamamiptal	

AÜSBF

<u>10. ADIM</u>: Açılan yeni pencerede "**Equation specification**" kısmında *log(y) log(x2) log(x3) c* düzenlemesini yapın ve **OK**'ye tıklayın.

<u>11. ADIM</u>: Denklem penceresi menü çubuğunda "**Name**" seçeneğini seçin ve denkleminizi "**Name to identify object**" kısmına **EQ02** yazıp adlandırarak kaydedin.

Dependent Variable: Method: Least Square Date: 02/15/10 Time Sample: 1971Q3 1979 Included observations	Y es : 23:39 5Q2 : 16	EQ01			Dependent Variable: LOG(Y) Method: Least Squares Date: 02/15/10 Time: 23:39 Sample: 1971Q3 1975Q2 Included observations: 16		EQ02		
Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
X2 X3 C	-3782.196 2815.252 9734.217	572.4547 947.5112 2888.059	-6.606979 2.971207 3.370505	0.0000 0.0108 0.0050	LOG(X2) LOG(X3) C	-1.760719 1.339780 9.227760	0.298206 0.527324 0.568390	-5.904371 2.540714 16.23490	0.0001 0.0246 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.770648 0.735363 1050.883 14356623 -132.3601 2.209999	Mean depen S.D. depend Akaike info Schwarz crit F-statistic Prob(F-statistic	dent var lent var criterion terion stic)	7645.000 2042.814 16.92001 17.06487 21.84067 0.000070	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.729174 0.687509 0.171547 0.382569 7.164472 2.058814	Mean depen S.D. depend Akaike info of Schwarz critt F-statistic Prob(F-statistic	dent var lent var criterion terion stic)	8.902209 0.306877 -0.520559 -0.375699 17.50066 0.000205

Regresyon çıktılarından da görüldüğü üzere her iki model de veriyi iyi açıklamaktadır. Katsayılar beklenen işaretlere sahiptir ve t ile R^2 değerleri istatistiksel olarak anlamlıdır.

MWD testinde kurulan hipotez şu şekildedir;

*H*₀: *Doğrusal Model*

$H_1: Log - doğrusal Model$

Bilindiği üzere MWD testi 6 adımda gerçekleştirilmektedir.

<u>I. ADIM</u>: Doğrusal model tahmin edilerek tahmin edilen Y değerleri (\hat{Y}) elde edilir. Bunları **YF** olarak adlandıralım.

II. ADIM: Log-doğrusal model tahmin edilerek tahmin edilen lnY değerleri (\widehat{lnY}) elde edilir. Bunları **LNYF** olarak adlandıralım.

<u>III. ADIM:</u> $Z_1 = (lnYF - LNYF)$ şeklinde bir değişken oluşturalım.

IV. ADIM: Y'yi X ve Z_1 üzerine regress edelim. Eğer Z_1 'e ait katsayı istatistiksel olarak anlamlı (t-testi ile) ise H_0 'ı reddedelim.

V. ADIM: $Z_2 = (antilog LNYF - YF)$ şeklinde bir değişken oluşturalım.

<u>VI. ADIM:</u> logY'yi logX ve $logZ_2$ üzerine regress edelim. Eğer Z_2' ye ait katsayı istatistiksel olarak anlamlı (t-testi ile) ise H_1' i reddedelim.

İki model arasında MWD testi yardımıyla seçim yapmak için ilk olarak doğru modelin doğrusal model olduğu hipotezini test edelim. Sonrasında IV. ADIM'ı uygulayarak aşağıdaki denklemi (regresyon çıktısına bakın) elde edelim. Bu işlemi Eviews'ta gerçekleştirmek için;

<u>1.ADIM</u>: Çalışma dosyası penceresinde **EQ01**'i simgesine çift tıklayarak açın.

<u>2.ADIM</u>: Denklem penceresi menü çubuğunda "**Forecast**" seçeneğini seçin. "**Forecast name**" kısmına **YF** yazın ve "**Output**" kısmındaki iki kutucuğun onayını kaldırın ve **OK**'ye tıklayın. Çalışma dosyası penceresinde *YF* adında yeni bir seri oluşacaktır.

3.ADIM: Çalışma dosyası penceresinde **EQ02**'i simgesine çift tıklayarak açın.

<u>4.ADIM</u>: Denklem penceresi menü çubuğunda "**Forecast**" seçeneğini seçin. "**Series to forecast**⁵" kısmında *log(Y)*'yi seçin, "**Forecast name**" kısmına **LNYF** yazın, "**Output**" kısmındaki iki kutucuğun onayını kaldırın ve **OK**'ye tıklayın. Çalışma dosyası penceresinde *LNYF* adında yeni bir seri oluşacaktır.

5.ADIM: Çalışma dosyası menü çubuğunda "**Genr**" seçeneğini seçin, "**Enter equation**" kısmına *z1=(log(YF)-LNYF)* yazın ve **OK**'ye tıklayın.

<u>6. ADIM:</u> Çalışma dosyası penceresinde CTRL'ye basılı tutarak sırasıyla Y, X2, X3 ve Z1 nesnelerini seçin.

<u>5. ADIM</u>: Nesneler seçili iken üzerine sağ tuşla tıklayın. Açılan seçeneklerden "**Open**"ı ve ardından "**as Equation**" seçeneğini seçin.

6. ADIM: Açılan yeni pencerede OK'ye tıklayın.

<u>7. ADIM:</u> Denklem penceresi menü çubuğunda "Name" seçeneğini seçin ve denkleminizi "Name to identify object" kısmına EQ03 yazıp adlandırarak kaydedin.

⁵ Eviews'taki "**Forecast**" prosedürü dönüştürülmüş bağımlı değişken (buradaki durumda *LOG(S)*) veya orijinal değişken (buradaki durumda *S*) için öngörü yapma seçeneği sunmaktadır. Burada *S* seçilmektedir çünkü "Quasi- R^2 " hesaplaması *LOG(S)*'nin antilogunun alınarak *S*'ye dönüştürülmesini gerektir (bu işlem *@exp(LOG(S)* komutu ile de gerçekleştirilebilir).

Dependent Variable: Y
Method: Least Squares
Date: 02/16/10 Time: 00:28
Sample: 1971Q3 1975Q2
Included observations: 16

Variable	Coefficient	Std. Error	t-Statistic	Prob.
X2	-3783.063	597.2859	-6.333755	0.0000
X3 71	2817.717	993.3301 4116.818	2.836637	0.0150
C	9727.566	3023.017	3.217834	0.0074
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.770656 0.713320 1093.774 14356110 -132.3598 2.208834	Mean depen S.D. depend Akaike info Schwarz crit F-statistic Prob(F-statistic	ident var lent var criterion terion stic)	7645.000 2042.814 17.04497 17.23812 13.44104 0.000382

Z1 değişkenine ait katsayı istatistiksel olarak anlamlı olmadığından (prob.=0.983>0.05) doğru model doğrusaldır hipotezini reddedemeyiz.

Doğru modelin log-doğrusal olduğunu varsayalım. MWD testindeki VI.Adım'dan hareketle **Z2** değişkenini içeren regresyonu tahmin edelim. Bu işlemi Eviews'ta gerçekleştirmek için;

<u>1.ADIM</u>: Çalışma dosyası menü çubuğunda "**Genr**" seçeneğini seçin, "**Enter equation**" kısmına *z2=(exp(LNYF)-YF)* yazın ve **OK**'ye tıklayın.

2.ADIM: Çalışma dosyası penceresinde **CTRL**'ye basılı tutarak sırasıyla **Y**, **X2**, **X3** ve **Z2** nesnelerini seçin.

<u>3.ADIM</u>: Nesneler seçili iken üzerine sağ tuşla tıklayın. Açılan seçeneklerden "**Open**"ı ve ardından "**as Equation**" seçeneğini seçin.

<u>4.ADIM</u>: Açılan yeni pencerede "**Equation specification**" kısmında *log(y) log(x2) log(x3) z2 c* düzenlemesini yapın ve **OK**'ye tıklayın.

<u>5.ADIM</u>: Denklem penceresi menü çubuğunda "**Name**" seçeneğini seçin ve denkleminizi "**Name to identify object**" kısmına **EQ04** yazıp adlandırarak kaydedin.

Dependent Variable: LOG(Y)
Method: Least Squares
Date: 02/16/10 Time: 00:59
Sample: 1971Q3 1975Q2
Included observations: 16

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LOG(X2) LOG(X3) Z2 C	-1.969907 1.589154 -0.000129 9.148611	0.306887 0.517155 7.79E-05 0.535554	-6.418993 3.072879 -1.661276 17.08253	0.0000 0.0097 0.1225 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.779814 0.724767 0.160996 0.311035 8.820498 2.076299	Mean depen S.D. depend Akaike info Schwarz crit F-statistic Prob(F-stati	ident var lent var criterion terion stic)	8.902209 0.306877 -0.602562 -0.409415 14.16645 0.000301

Z2 değişkenine ait katsayı istatistiksel olarak anlamlı olmadığından (prob.=0.1225>0.05) doğru model log-doğrusaldır hipotezini reddedemeyiz.

9.4. Ölçme Hatası

Ölçme hatası konusu *Gujarati Table 13.2*'de yer alan örnek yardımıyla anlatılacaktır. Tabloda yer alan veri gerçek tüketim harcaması, gerçek gelir, ölçülen tüketim harcaması ve ölçülen gelire ait varsayımsal bir veridir. Bağımlı değişkende ölçüm hatası ve bağımsız değişkende ölçüm hatası durumlarında ortaya çıkan regresyon sonuçlarını görüntülemek için aşağıdaki adımları takip edin.

Bağımlı Değişkende Ölçüm Hatası:

<u>1. ADIM</u>: Eviews'u açın. "File/New/Workfile" seçeneğini seçin. "Workfile structure type" kısmında "Unstructured/Undated" seçeneğini seçin ve "Obsevations" kısmına 10 yazın. OK'ye basın.

<u>2. ADIM:</u> "File/Import/Read Text-Lotus-Excel" seçeneğini seçin. *Table 13.2.xls* dosyasını bulun ve açın.

<u>3. ADIM:</u> "Upper left data cell" kısmına A2, "Name for series or Number if named in file" kısmına 7 yazarak OK'ye tıklayın.

<u>4. ADIM</u>: Tabloda yer alan veriden hareketle gerçek tüketim fonksiyonunu tahmin etmek için çalışma dosyası penceresinde **CTRL**'ye basılı tutarak sırasıyla **YS** ve **XS** nesnelerini seçin.

<u>5. ADIM:</u> Nesneler seçili iken üzerine sağ tuşla tıklayın. Açılan seçeneklerden "**Open**"ı ve ardından "**as Equation**" seçeneğini seçin.

6. ADIM: Açılan yeni pencerede OK'ye tıklayın.

<u>7. ADIM</u>: Denklem penceresi menü çubuğunda "Name" seçeneğini seçin ve denkleminizi "Name to identify object" kısmına EQ01 yazıp adlandırarak kaydedin.

<u>8. ADIM</u>: Çalışma dosyası penceresinde **CTRL**'ye basılı tutarak sırasıyla **Y** ve **XS** nesnelerini seçin.

<u>9. ADIM</u>: Nesneler seçili iken üzerine sağ tuşla tıklayın. Açılan seçeneklerden "**Open**"ı ve ardından "**as Equation**" seçeneğini seçin.

<u>10. ADIM</u>: Açılan yeni pencerede **OK**'ye tıklayın.

<u>11. ADIM</u>: Denklem penceresi menü çubuğunda "**Name**" seçeneğini seçin ve denkleminizi "**Name to identify object**" kısmına **EQ02** yazıp adlandırarak kaydedin.

Dependent Variable: Method: Least Square Date: 02/15/10 Time Sample: 1 10 Included observations	e: YS Jares me: 22:41 ons: 10				Dependent Variable: Y Method: Least Squares Date: 02/15/10 Time: 22:44 Sample: 1 10 Included observations: 10				
Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
XS C	0.600000 25.00002	0.058388 10.47727	10.27617 2.386121	0.0000 0.0441	XS C	0.600000 24.99999	0.068091 12.21846	8.811762 2.046084	0.0000 0.0750
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.929577 0.920774 10.60662 900.0032 -36.68845 2.816038	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion F-statistic Prob(F-statistic)		127.0000 37.68288 7.737690 7.798207 105.5996 0.000007	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.906594 0.894918 12.36931 1223.999 -38.22585 2.286928	Mean depen S.D. depend Akaike info Schwarz crit F-statistic Prob(F-statistic	dent var lent var criterion terion stic)	127.0000 38.15757 8.045171 8.105688 77.64715 0.000022

Sonuçlardan da görüldüğü üzere tahmin edilen katsayılar aynı kalmaktadır. Bağımlı değişkende ölçüm sorununun tek etkisi katsayılara ait standart hataları büyütmesidir.

Bağımsız Değişkende Ölçüm Hatası:

<u>1. ADIM</u>: Çalışma dosyası penceresinde **CTRL**'ye basılı tutarak sırasıyla **YS** ve **X** nesnelerini seçin.

<u>2. ADIM</u>: Nesneler seçili iken üzerine sağ tuşla tıklayın. Açılan seçeneklerden "**Open**"ı ve ardından "**as Equation**" seçeneğini seçin.

3. ADIM: Açılan yeni pencerede OK'ye tıklayın.

<u>4. ADIM</u>: Denklem penceresi menü çubuğunda "**Name**" seçeneğini seçin ve denkleminizi "**Name to identify object**" kısmına **EQ03** yazıp adlandırarak kaydedin.

Dependent Variable: YS Method: Least Squares Date: 02/15/10 Time: 22:41 Sample: 1 10 Included observations: 10					Dependent Variable: Method: Least Square Date: 02/15/10 Time Sample: 1 10 Included observations	YS es : 22:56 : 10			
Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
XS C	0.600000 25.00002	0.058388 10.47727	10.27617 2.386121	0.0000 0.0441	x c	0.583097 28.45654	0.063068 11.28157	9.245575 2.522392	0.0000 0.0357
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.929577 0.920774 10.60662 900.0032 -36.68845 2.816038	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion F-statistic Prob(F-statistic)		127.0000 37.68288 7.737690 7.798207 105.5996 0.000007	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.914421 0.903723 11.69242 1093.702 -37.66308 2.842096	Mean depen S.D. depend Akaike info Schwarz cri F-statistic Prob(F-stati	dent var lent var criterion terion stic)	127.0000 37.68288 7.932616 7.993133 85.48065 0.000015

Sonuçlardan da görüldüğü üzere tahmin edilen katsayılar sapmalıdır.

9.5. Ölçü Birimi Değişimi

*Table 6.2.xls*⁶ dosyasını Eviews'ta bir çalışma dosyası oluşturarak buraya aktarın.

$$GPDI = \alpha + \beta GDP + \varepsilon$$

şeklinde bir model tahmin edilecek olsun. Bizden istenen regresyon tahminlerinin ise şu şekilde olduğunu varsayalım.

- i. GPDI ve GDP milyar dolar cinsinden olduğunda tahmin edilen regresyonu bulun.
- ii. GPDI ve GDP milyon dolar cinsinden olduğunda tahmin edilen regresyonu bulun.

⁶ <u>GPDIBL</u>: Gayrı Safi Yurtiçi Yatırım (Milyar \$), <u>GPDIM</u>: Gayrı Safi Yurtiçi Yatırım (Milyon \$), <u>GDPBL</u>: Gayrı Safi Yurtiçi Hasıla (Milyar \$), <u>GDPM</u>: Gayrı Safi Yurtiçi Hasıla (Milyon \$)

- iii. GPDI milyar dolar, GDP milyon dolar cinsinden olduğunda tahmin edilen regresyonu bulun.
- iv. GPDI milyon dolar, GDP milyar dolar cinsinden olduğunda tahmin edilen regresyonu bulun.

<u>GPDI ve GDP milyar dolar</u>

cinsinden olduğunda:

 ADIM: Denklemi tahmin etmek için çalışma dosyası penceresinde CTRL'ye basılı tutarak sırasıyla GPDIBL ve GDPB nesnelerini seçin.

2. ADIM: Nesneler seçili iken üzerine sağ tuşla tıklayın. Açılan seçeneklerden "**Open**"ı ve ardından "**as Equation**" seçeneğini seçin.

Dependent Variable: GPDIBL
Method: Least Squares
Date: 02/15/10 Time: 21:24
Sample: 1988 1997
Included observations: 10

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C GDPB	-1026.498 0.301583	257.5874 0.039900	-3.985047 7.558482	0.0040 0.0001
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.877170 0.861816 54.49311 23755.99 -53.05441 0.614662	Mean deper S.D. depen Akaike info Schwarz cr F-statistic Prob(F-stat	ndent var dent var criterion iterion istic)	916.1100 146.5929 11.01088 11.07140 57.13064 0.000066

3. ADIM: Açılan yeni pencerede OK'ye tıklayın.

<u>4. ADIM</u>: Denklem penceresi menü çubuğunda "**Name**" seçeneğini seçin ve denkleminizi "**Name to identify object**" kısmına **EQ01** yazıp adlandırarak kaydedin. Sarı ile işaretlenmiş kısımlara dikkat edin.

GPDI ve GDP milyon dolar cinsinden olduğunda:

 <u>ADIM</u>: Denklemi tahmin etmek için çalışma dosyası penceresinde CTRL'ye basılı tutarak sırasıyla GPDIM ve GDPM nesnelerini seçin.

2. ADIM:Nesnelerseçiliikenüzerinesağtuşlatıklayın.Açılanseçeneklerden"**Open**"ıve

Dependent Variable: GPDIM Method: Least Squares Date: 02/15/10 Time: 21:43 Sample: 1988 1997 Included observations: 10

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C GDPM	-1026498. 0.301583	257587.4 0.039900	-3.985047 7.558482	0.0040 0.0001
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.877170 0.861816 54493.11 2.38E+10 -122.1320 0.614662	Mean deper S.D. depen Akaike info Schwarz cri F-statistic Prob(F-stati	ndent var dent var criterion iterion istic)	916110.0 146592.9 24.82639 24.88691 57.13064 0.000066

ardından "as Equation" seçeneğini seçin.

<u>3. ADIM:</u> Açılan yeni pencerede **OK'**ye tıklayın.

<u>4. ADIM</u>: Denklem penceresi menü çubuğunda "**Name**" seçeneğini seçin ve denkleminizi "**Name to identify object**" kısmına **EQ02** yazıp adlandırarak kaydedin. Sarı ile işaretlenmiş kısımlara dikkat edin.

GPDI milyar dolar cinsinden ve GDP milyon dolar cinsinden olduğunda:

<u>1. ADIM</u> : Denklemi tahmin etmek için çalışma dosyası	Dependent Variable: GPDIBL Method: Least Squares Date: 02/15/10 Time: 21:33						
penceresinde CTRL'ye basılı	penceresinde CTRL'ye basılı Sample: 1988 1997						
tutarak sırasıyla GPDIBL ve		. 10					
GDPM nesnelerini seçin.	Variable	Coefficient	Std. Error	t-Statistic	Prob.		
2. ADIM: Nesneler seçili	C GDPM	-1026.498 0.000302	257.5874 3.99E-05	-3.985047 7.558482	0.0040 0.0001		
iken üzerine sağ tuşla	R-squared	0.877170	Mean deper	ident var	916.1100		
tıklavın. Acılan	Adjusted R-squared	0.861816	S.D. depend	lent var	146.5929		
······································	S.E. of regression	54.49311	Akaike info	criterion	11.01088		
seçeneklerden " Open "ı ve	Sum squared resid	23755.99	Schwarz cri	terion	11.07140		
ardından " as Equation "	Log likelihood Durbin-Watson stat	-53.05441 0.614662	F-statistic Prob(F-stati	stic)	57.13064 0.000066		
seçeneğini seçin.			-				

<u>3. ADIM:</u> Açılan yeni pencerede **OK'**ye tıklayın.

<u>4. ADIM</u>: Denklem penceresi menü çubuğunda "**Name**" seçeneğini seçin ve denkleminizi "**Name to identify object**" kısmına **EQ03** yazıp adlandırarak kaydedin. Sarı ile işaretlenmiş kısımlara dikkat edin.

GPDI milyon dolar cinsinden ve GDP milyar dolar cinsinden olduğunda:

 <u>ADIM</u>: Denklemi tahmin etmek için çalışma dosyası penceresinde CTRL'ye basılı tutarak sırasıyla GPDIM ve GDPB nesnelerini seçin.

2. ADIM:Nesnelerseçiliikenüzerinesağtuşlatıklayın.Açılanseçeneklerden"Open"ıve

Dependent Variable: GPDIM Method: Least Squares Date: 02/15/10 Time: 21:34 Sample: 1988 1997 Included observations: 10

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C GDPB	-1026498. 301.5826	257587.4 39.89989	-3.985047 7.558482	0.0040 0.0001
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.877170 0.861816 54493.11 2.38E+10 -122.1320 0.614662	Mean depen S.D. depen Akaike info Schwarz cri F-statistic Prob(F-stat	ndent var dent var criterion iterion istic)	916110.0 146592.9 24.82639 24.88691 57.13064 0.000066

ardından "as Equation" seçeneğini seçin.

3. ADIM: Açılan yeni pencerede OK'ye tıklayın.

<u>4. ADIM</u>: Denklem penceresi menü çubuğunda "**Name**" seçeneğini seçin ve denkleminizi "**Name to identify object**" kısmına **EQ04** yazıp adlandırarak kaydedin. Sarı ile işaretlenmiş kısımlara dikkat edin.

İlk iki regresyon çıktısı (**EQ01** ve **EQ02**) incelendiğinde tahminleri milyar veya milyon dolar cinsinden yapmak arasındaki farkın sadece sabit terim üzerinde olduğu görülmektedir. **EQ01**'de (-1026.4979) olan sabit terim **EQ02**'de (-1026497.99) olmuştur. Bunu yanında **EQ01**'de (257.5874) olan sabit terim standart hatası **EQ02**'de (257587.4036) olmuştur. Kısacası **EQ02**'de sabit terim ve sabit terime ait standart hata **EQ01**'dekinin 1000 katı haline gelmiştir. Her iki tahmin sonucunda elde edilen eğim katsayısı, eğim katsayı standart hatası ve R^2 'ler aynıdır.

EQ03'te elde edilen sonuçlar incelendiğinde ise sabit terime ait değerin ve standart hatasının **EQ01**'e göre değişiklik göstermediği ancak beklenildiği üzere eğim katsayısının ve katsayı standart hatasının **EQ01**'deki eğim katsayısının ve katsayı standart hatasının 1/1000 katı olduğu gözlemlenmektedir.

Son olarak **EQ04**'te elde edilen sonuçları incelendiğimizde ise sabit terime ait değer ile standart hatasının ve eğim katsayısı ile katsayı standart hatasının EQ01'deki değerlerin 1000 katı olduğu gözlemlenmektedir.

Dikkat edilirse dört regresyonda da R^2 'ler aynıdır. Bu şaşırtıcı bir durum değildir çünkü bilindiği üzere R^2 ölçü birimi değişikliklerine karşı duyarsızdır.

Variable	Coefficient	Std. Error	t-Statistic	Prob.	
C	-1026.498	257.5874	-3.985047	0.0040	EQ01
GDPB	0.301583	0.039900	7.558482	0.0001	
C	-1026498.	257587.4	-3.985047	0.0040 [:]	EQ02
GDPM	0.301583	0.039900	7.558482	0.0001	
C	-1026.498	257.5874	-3.985047	0.0040	EQ03
GDPM	0.000302	3.99E-05	7.558482	0.0001	
C	-1026498.	257587.4	-3.985047	0.0040	EQ04
GDPB	301.5826	39.89989	7.558482	0.0001	

9.6. Ek: İlave Belirleme Kriteri

9.6.1. Ramsey Model Kurma Hata Testi (Reset)

Bu bölüme başlamadan önce *"EKK modeline değişken ekleme veya modelden değişken çıkarma"* bölümünde yer alan adımlardan 1 ila 5'i tamamlayın. Ramsey Model Kurma Hata Testini gerçekleştirmek için aşağıdaki adımları takip edin.

1. ADIM: Chick6.wf1 isimli dosyayı açın.

<u>2. ADIM:</u> Çalışma dosyası penceresinde simgesine tıklayarak **EQ02**'yi açın.

<u>3. ADIM</u>: Denklem menü çubuğundan "**Forecast**" seçeneğini seçin, "**Forecast name**" kısmına *YF* yazın ve **OK**'ye tıklayın⁷.

<u>4. ADIM</u>: Çalışma dosyası menü çubuğundan "**Objects/New Object/Equation**" seçeneğini seçin, "**Equation Specification**" kısmına sırasıyla Y C PC YD YF^2 YF^3 YF^4 yazın ve **OK**'ye tıklayın.

<u>5. ADIM</u>: Denklem menü çubuğundan "**Name**" seçeneğini seçin, "**Name to identify object** " kısmına **EQ03** yazın ve **OK**'ye tıklayın.

⁷ Bu işlem **EQ02** için tahmin edilmiş olan katsayılar temelinde Y için öngörü değerlerini içeren yeni bir seri yaratır.

<u>6. ADIM:</u> Denklem menü çubuğundan "View/Coefficient Tests/Wald-Coefficient Restrictions" seçeneğini seçin, "Coefficient restrictions separated by commas"⁸ kısmına *C*(*4*)=0, *C*(*5*)=0, *C*(*6*)=0 yazın ve **O**K'ye tıklayın.

<u>7.</u> ADIM: Kritik F-değerine istatistikî tablolardan bakın veya komut satırına =@qfdist(0.95,3,eq03.@regobs- eq03.@ncoef) yazıp **ENTER**'a basın ki bu işlem durum çubuğunda kritik F-değerini gösterecektir.

Equation: EQ03 View Proc Object P	Workfile: CHICK	5::Untitled\ Estimate Fore	cast Stats Resid
Wald Test: Equation: EQ03			
Test Statistic	Value	df	Probability
F-statistic Chi-square	4.323568 12.97070	<mark>(3, 38)</mark> 3	0.0102 0.0047
Null Hypothesis S	Summary:		
Normalized Restr	iction (= 0)	Value	Std. Err.
C(4) C(5) C(6)		0.023868 -0.000748 5.48E-06	0.082475 0.001106 5.36E-06
Restrictions are li	inear in coefficier	its.	

<u>8. ADIM</u>: Hesaplanan F-istatistiği 4.32 kritik F-istatistiği 2.85'i aştığından eklenen değişkenlere ait katsayıların eşanlı olarak sıfıra eşit olduğu boş hipotezi %5 anlamlılık düzeyinde reddedilir.

9.6.2. Ramsey Model Kurma Hata Testi (RESET) (EViews)

Bu bölüme başlamadan önce *"EKK modeline değişken ekleme veya modelden değişken çıkarma"* bölümünde yer alan adımlardan 1 ila 5'i tamamlayın. EViews kullanarak Ramsey Model Kurma Hata Testini gerçekleştirmek için aşağıdaki adımları takip edin.

⁸ Katsayı kısıtlarının *C(i)* şeklinde yazıldığına dikkat edin. Burada **i**, "**Equation Specification**" kısmına yazılan şekliyle bağımlı değişkenden sonraki sırasını gösterir. Dolayısıyla, *C(4),C(5)* ve *C(6)* "**Equation Specification**" kısmında sırasıyla *YF*^2 *YF*^3 ve *YF*^4'e ait katsayıları göstermektedir.

1. ADIM: Chick6.wf1 isimli dosyayı açın.

<u>2. ADIM:</u> Çalışma dosyası penceresinde simgesine tıklayarak **EQ02**'yi açın.

<u>3. ADIM</u>: Denklem menü çubuğundan "View/Stability Tests/Ramsey RESET Test" seçeneğini seçin, "Number of fitted terms"⁹ kısmına 3 yazın ve OK'ye tıklayın.

Burada yer alan çıktının bir önceki bölümde elde edilen çıktı ile benzer olduğuna dikkat edin. Buradaki durumda test sonuçları regresyon tablosunun üst kısmında yer almaktadır. Hesaplanan F-istatistiği 4.32 kritik F-istatistiğini 2.85 aştığından, eklenen değişkenlere ait katsayıların eşanlı olarak sıfıra eşit olduğu boş hipotezi %5 düzeyinde reddedilir. Bu bireysel t-istatistikleri anlamsız olmasına rağmen geçerlidir.

⁹ "**Fitted terms**" orijinal regresyondaki tahmin edilen değerlerin kuvvetleridir. Örneğin, 3 olarak tanımlandığında test regresyona \hat{y}^2 , \hat{y}^3 ve \hat{y}^4 'ü ekler. Eğer "**fitted terms**" büyük bir sayı olarak tanımlanırsa EViews "**a near singular matrix**" gibi bir hata mesajı verebilir. Bunun nedeni tahmin edilmiş değerlerin yüksek derecede doğrusal ilişkili (collinear) olmasından kaynaklanır. Ramsey RESET testi sadece EKK ile tahmin edilmiş olan denklemlere uygulanabilir.

Equation: EQ02 Workfile: CHICK6::Untitled							
View Proc Object Print	Name Freeze E	Estimate Forecas	st Stats Resid	s			
Ramsey RESET Test	:						
F-statistic Log likelihood ratio	4.323568 12.92125	Prob. F(3,38 Prob. Chi-So	3) quare(3)	0.010205 0.004810			
Test Equation: Dependent Variable: Y Method: Least Squares Date: 02/14/10 Time: 18:53 Sample: 1951 1994 Included observations: 44							
Variable	Coefficient	Std. Error	t-Statistic	Prob.			
C PC YD FITTED^2 FITTED^3 FITTED^4	23.80305 -0.591937 0.360179 0.023868 -0.000748 5.48E-06	55.36771 1.718030 0.714812 0.082475 0.001106 5.36E-06	0.429908 -0.344544 0.503880 0.289394 -0.676301 1.022646	0.6697 0.7323 0.6173 0.7739 0.5029 0.3129			
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.988647 0.987154 1.908510 138.4116 -87.64622 0.861509	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion F-statistic Prob(F-statistic)		43.37500 16.83854 4.256646 4.499945 661.8504 0.000000			

9.7. Akaike Bilgi Kriteri (AIC) ve Schwarz Kriteri (SC) (EViews)

Bu bölüme başlamadan önce *"EKK modeline değişken ekleme veya modelden değişken çıkarma"* bölümünde yer alan adımlardan 1 ila 5'i tamamlayın. *Akaike Bilgi Kriteri (AIC)* ve *Schwarz Kriteri (SC)* EViews 'un EKK tahmin çıktısında yer almaktadır.

1. ADIM: Chick6.wf1 isimli dosyayı açın.

<u>2. ADIM</u>: Aşağıdaki tahmin çıktısını elde etmek için çalışma dosyası penceresinde simgesine tıklayarak **EQ01**'i açın.

<u>3. ADIM</u>: Aşağıdaki tahmin çıktısını elde etmek için çalışma dosyası penceresinde simgesine tıklayarak

EQ02'i açın.

Equation: EQ01 Workfile: CHICK6::Untitled	Equation: EQ02 Wo	rkfile: CHICK6:	:Untitled\		_ 🗆 🗵		
View Proc Object Print Name Freeze Estimate Forecast Stats Resids			View Proc Object Print	Name Freeze	Estimate Foreca	st Stats Resid	s
Dependent Variable: Y Method: Least Squares Date: 02/14/10 Time: 18:32 Sample: 1951 1994 Included observations: 44			Dependent Variable: Method: Least Squar Date: 02/14/10 Time Sample: 1951 1994 Included observations	Y es :: 18:33 :: 44			
Variable Coefficient Std. Erro	r t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
C 31.49604 1.31258 PC -0.729695 0.08002 PB 0.114148 0.04568	6 23.99541 0 -9.118941 6 2.498536 7 14 21738	0.0000 0.0000 0.0167	C PC YD	32.94193 -0.700954 0.272477	1.251191 0.084099 0.005936	26.32845 -8.334841 45.90552	0.0000 0.0000 0.0000
YD 0.233830 0.01644 R-squared 0.986828 Mean de Adjusted R-squared 0.985840 S.D. dep S.E. of regression 2.003702 Akaike ir Sum squared resid 160.5929 Schwarz Log likelihood -90.91632 F-statisti Durbin-Watson stat 0.978759 Prob(F-s	7 14.21736 pendent var endent var fo criterion criterion c atistic)	43.37500 16.83854 4.314378 4.476577 998.9207 0.000000	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.984772 0.984030 2.127957 185.6562 -94.10685 0.946570	Mean deper S.D. depend Akaike info Schwarz cri F-statistic Prob(F-stati	ndent var dent var criterion terion stic)	43.37500 16.83854 4.413948 4.535597 1325.737 0.000000

EViews tarafından rapor edilen *Akaike Bilgi Kriteri (AIC)* ve *Schwarz Kriterinin (SC) PB* değişkeni EKK regresyonundan dışlandığında daha büyük olduğuna dikkat edin. Her iki kriter de **EQ01**'in **EQ02**'ye tercih edilmesi gerektiğine dair kanıtlar ortaya koymaktadır.

9.8. Alıştırma

Drugs5.wf1 isimli dosyayı açın.

a.

- Çalışma dosyası menü çubuğunda "Objects/New Object/Equation" seçeneğini seçin, "Equation Specification" kısmına sırasıyla P C GDPN CVN PP DPC IPC CV yazın ve OK'ye tıklayın. Denklem penceresinde "Name" seçeneğini seçin ve "Name to identify object" kısmına" EQ01 yazarak OK'ye tıklayın.
- ii. Çalışma dosyası menü çubuğunda "Objects/New Object/Equation" seçeneğini seçin,
 "Equation Specification" kısmına sırasıyla P C GDPN CVN PP DPC IPC N yazın ve OK'ye tıklayın. Denklem penceresinde "Name" seçeneğini seçin ve "Name to identify object" kısmına EQ02 yazarak OK 'ye tıklayın.
- EQ01 ve EQ02'yi aynı anda açın. Bu bölümde bahsedilen dört farklı kritere göre değerlendirerek CV ve/ya N değişkenlerinin gereksiz veya dışlanan değişken olup olmadığını belirleyin.